Optimisation of the Fischer-Tropsch process using zeolites for tail gas separation.

نویسندگان

  • J Perez-Carbajo
  • P Gómez-Álvarez
  • R Bueno-Perez
  • P J Merkling
  • S Calero
چکیده

This work is aimed at optimizing a Fischer-Tropsch Gas To Liquid (GTL) process by recycling compounds of the expelled gas mixture using zeolites for the separation. To that end, we have performed a computational study on four structures widely used in industry. A range of Si/Al ratios have been explored and the effects of their distribution assessed. The ability of the considered force fields and molecular models to reproduce experimental results has been widely proved in previously reported studies. Since this tail gas is formed by a five-component mixture, namely carbon dioxide, methane, carbon monoxide, nitrogen and hydrogen, molecular simulations present clear advantages over experiments. In addition, the viability of the Ideal Adsorption Solution Theory (IAST) has been evaluated to easily handle further separation steps. On the basis of the obtained results, we provide a separation scheme to perform sequentially the separation of CO2, CH4, CO, N2 and H2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvent Pre-treated Effects of Carbon Nanotube-supported Cobalt Catalysts on Activity and Selectivity of Fischer-Tropsch Synthesis

In this study, the effect of preparation technique of carbon nanotube (CNT)-supported cobalt catalysts on the activity and selectivity of Fischer-Tropsch synthesis (FTS) was studied. Different concentrations of acetic acid were used for the pretreatment of the catalyst support to modify the surface properties of CNT. This modification improved the reduction degree and dispersion of supported co...

متن کامل

Determination of the Product Selectivity Model from the Fischer Tropsch Synthesis in a Fixed Bed Reactor

The Fischer-Tropsch synthesis is a catalytic process that can produce a fuel similar to fossil fuels by using primary sources such as agricultural waste and carbon sources that can convert into synthesis gas by superheated steam. All fuel derivatives can be supplied through the Fischer-Tropsch reaction. The synthesis produces a variety of hydrocarbons via parallel and sequential reactions. Howe...

متن کامل

Development of an Integrated Structure of CHP and Heavy Hydrocarbons Liquids Using Fischer-Tropsch Synthesis

Recent developments in gas-to-liquid conversion industry lead to reduction in initial investment, and it is expected by growth in demand for refined products in countries and the need to import these products in the countries. Implementing such projects can prevent currency outflow. In this article an integrated structure is developed for producing liquid fuels from natural gas through Fischer-...

متن کامل

Diffusion of Methanol in Zeolites: a Molecular Dynamics Study

Methanol is an important feedstock in numerous catalytic processes. It can be produced via Fischer-Tropsch reaction from synthesis gas [1] and its further transformation to hydrocarbons up to C10 is the basis of several industrially important reactions as for instance the Methanol to Gasoline process [2]. Methanol can also be used as an alkylating agent for aromatic compounds in zeolite-catalys...

متن کامل

Investigation of Products Distribution In Fischer-Tropsch Synthesis By Nano-sized Iron-based Catalyst

Nano-sized iron-based catalyst was prepared by the micro-emulsion method. The composition of the final nano-sized iron catalyst, in term of the atomic ratio contains: 100Fe/4Cu/2Ce. Experimental techniques of XRD, BET, TEM and TPR were used to study the phase, structure and morphology of the catalyst. Fischer-Tropsch Synthesis (FTS) reaction test was performed in a fixed bed reactor at pressure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 2014